扫描探针显微镜:扫描探针显微镜是借助于探测样品与探针之间存在的各种相互作用所表现出的各种不同特性来实现测量的。依据这些特性,目 前已开发出各种各样的扫描探针显微镜SPM。就测量表面形貌而言,扫描隧道显微镜和原子力显微镜(AFM, Atom force microscope)为人们熟悉和掌握。扫描探针显微测量方法是扫描测量,终给出的是整个被测区域上的表面形貌。SPM测量精度高,纵向及横向分辨率达原子量级,但是其测量范围较窄,同时操作较复杂。因此SPM常适合于测量结构单元在nm量级、测量区域为pum量级的微结构。近年来,随着纳米技术的飞速发展,对各种纳米器件表面精度的要求也越来越高,如在半导体掩膜、磁盘、宇宙空间用光学镜片、环形激光陀螺等中,均已提出表面粗糙度的均方根小于lnm的要求。要实现这么高精度的非常光滑表面,测量仪器的分辨力首先要达到纳米量级。于是迫切要求找到一种在X、 Y、Z三个方向的分辨力均能达到纳米量级的表面粗糙度测量方法。以扫描隧道显微镜与原子力显微镜为代表的扫描探针显微镜技术,由于其**高分辨力,完**满足这种微小尺寸的测量要求。
表面从本质上讲是三维的。然而,目前的绝大部分标准和测量仪器仍然是基于二维轮廓曲线的,这种二维曲线无法真实的反映表面的所有特征,由其得出的评定参数也因此无法真实地反映表面的功能特性。三维表面形貌的统计分析更具稳健性,它可以给出较小的参数偏差。实验表明,在同一表面对来自不同轮廓的参数测量,其差异可达50%。只有当表面满足各向同性和均-一性时,在任何位置和方向的轮廓才能表示表面。因为三维表面评价的优越性及表面形貌的评价正由二维向三维转变,这里介绍现对而言比较成熟的几个三维评价方法。
机械探针式测量方法:探针式轮廓仪测量范围大,测量精度高,但它是一种点扫描测量,测量费时。机械探针式测量方法是开发较早、研究充分的一一种表面轮廓测量方法。它利用机械探针接触被测表面,当探针沿被测表面移动时,被测表面的微观凹凸不平使探针上下移动,其移动量由与探针组合在- -起的位移传感器测量,所测数据经适当的处理就得到了被测表面的轮廓。机械探针是接触式测量,易损伤被测表面。
扫描电子显微镜:扫描电子显微镜(SEM, Scanning electronic microscope)利用聚焦得非常细的电子束作为电子探针。当探针扫描被测表面时,二次电子从被测表面激发出来,二次电子的强度与被测表面形貌有关,因此利用探测器测出二次电子的强度,便可处理出被测表面的几何形貌。SEM既可以用于pum量级结构的测量,也可用于nm量级结构的测量。它比较适合于定性测量,不能精确测定微小结构在纵向的尺寸。此外,它的电子束还会使某些对电子束敏感的样品产生辐射损伤。
-/gbaffhf/-
联系电话是0755-27403650,
主要经营深圳市启威测标准技术服务有限公司专注于表面微观形貌SEM、材料断口观察SEM、表面成分分析EDS、微量污染物成分分析、涂镀层厚度测试、表面粗糙度量测等检测服务。启威测根据CNAS实验室要求建设,保证检测结果的科学性、公正性和准确性,为客户提供优质、可靠、高效、满意的服务。。