射线检测是利用射线(X射线、γ射线、中子射线等)穿过材料或工件时的强度衰减,检测其内部结构不连续性的技术。穿过材料或工件时的射线由于强度不同,在感光胶片上的感光程度也不同,由此生成内部不连续的图像。射线检测主要应用于金属、非金属及其工件的内部缺陷的检测,检测结果准确度高、可靠性好。胶片可长期保存,可追溯性好,易于判定缺陷的性质及所处的平面位置。射线检测也有其不足之处,难于判定缺陷在材料、工件内部的埋藏深度;对于垂直于材料、工件表面的线性缺陷(如:垂直裂纹、穿透性气孔等)易漏判或误判;同时射线检测需严密保护措施,以防射线对人体造成伤害;检测设备复杂,成本高。射线检测只适用于材料、工件的平面检测,对于异型件及T型焊缝、角焊缝等检测无能为力了。
TOFD检测 原理是当超声波遇到诸如裂纹等的缺陷时,将在缺陷发生叠加到正常反射波上的 衍射波,探头探测到衍射波,可以判定缺陷的大小和深度。当超声波在存在缺陷的线性不连续处,如裂纹等处出现传播障碍时,在裂纹端点处除了正常反射 波以外,还要发生衍射现象。衍射能量在很大的角度范围内放射出并且假定此能量起源于裂纹末端。这与依赖于间断反射能量总和的常规超声波形成一个显著的对比。根据TOFD的理论和特点,在检测后壁容器方面具有巨大的优势,在国内使用的初期阶段要充分发挥其有点,使用其他技术弥补其缺点,让TOFD技术更快的应用到检测中。(超声波检测的一种,无损检测研究部新发展的检测方向)
磁粉检测是利用漏磁和合适的检测介质发现材料(工件)表面和近表面的不连续性的。磁粉检测作为表面检测具有操作灵活、成本低的特点,但磁粉检测只能应用于铁磁性材料、工件(碳钢、普通合金钢等)的表面或近表面缺陷的检测,对于非磁性材料、工件(如:不锈钢、铜等)的缺陷无法检测。磁粉检测和超声波检测一样,检测结果无原始记录,可追溯性差,无法检测到材料、工件深度缺陷,但不受材料、工件形状的限制。
磁粉检测优缺点:优点:无损,操作简单方便,检测成本低,对铁磁性材料表面及近表面缺陷检测灵敏度高,是表面缺陷检测的方法。缺点:对被检测件的表面光滑度要求高,对检测人员的技术和经验要求高,检测范围小检测速度慢。
超声波检测为适应不同类型的试件,不同取向、位置和性质的缺陷及质量要求,可选用的波形有纵波、横波、瑞利波、兰姆波和爬波。采用特定的扫描显示方式及相应的电子线路, 可获得试件中缺陷分布及形态的图像。材料特性的无损表征主要与超声在试件中的传播速度及在传播过程中能量的衰减与材料的微观组织结构有关,如果这种关系可从先前的冶金学研究得知,表征的内容可包括:弹性方面的评价,微观组织和形态变化的描 述,分散的声不连续性和缺陷群的评定,力学性能变化和材质下降的测量 等。此法优点是:可用于金属、非金属、 复合材料制件的无损评价; 对确定内部缺陷的诸参量较之其他无损检测方法有综合优势;灵敏度高,可检出数十 μm级缺陷;仅需从一侧接近试件;设备轻便可作现场检测。主要局限性是对材料及制件做的定性、定量表征,仍需进一步深入研究。