射线检测是利用射线(X射线、γ射线、中子射线等)穿过材料或工件时的强度衰减,检测其内部结构不连续性的技术。穿过材料或工件时的射线由于强度不同,在感光胶片上的感光程度也不同,由此生成内部不连续的图像。射线检测主要应用于金属、非金属及其工件的内部缺陷的检测,检测结果准确度高、可靠性好。胶片可长期保存,可追溯性好,易于判定缺陷的性质及所处的平面位置。射线检测也有其不足之处,难于判定缺陷在材料、工件内部的埋藏深度;对于垂直于材料、工件表面的线性缺陷(如:垂直裂纹、穿透性气孔等)易漏判或误判;同时射线检测需严密保护措施,以防射线对人体造成伤害;检测设备复杂,成本高。射线检测只适用于材料、工件的平面检测,对于异型件及T型焊缝、角焊缝等检测无能为力了。
超声波检测直射声束法:是采用直探头将声束垂直入射工件待检测面进行检测的方法,又称纵波法。当直探头在待检测面上移动时,无缺陷处示波屏上只有始波和底波,;若探头移到有缺陷处且缺陷反射面比声束小时,则显示屏上出现始波、缺陷波、和底波,;当探头移到大缺陷处时,则示波屏上只出现始波、缺陷波,显然,垂直法探伤能发现与探伤面平行或近于平行的缺陷。
环境模拟试验:这个部分主要是评估曝露在腐蚀环境的原材料及成品性能。设备可进行传统试验也可作腐蚀试验。通过加快暴露周期或模仿环境条件试验,按照潜在寿命,外观,相关的应力,材料相互作用等来评估产品的反应。常见的有盐雾试验、循环试验、耐候性试验等等。
金相分析是金属材料试验研究的重要手段之一,采用定量金相学原理,由二维金相试样磨面或薄膜的金相显微组织的测量和计算来确定合金组织的三维空间形貌,从而建立合金成分、组织和性能间的定量关系。将图像处理系统应用于金相分析,具有精度高、速度快等优点,可以大大提高工作效率。
力学性能:材料的力学性能是指在外加载荷的作用下或载荷与环境因素联合作用下表现的变形、损伤、与断裂的行为规律及其物理本质和评定方法。机械行业中常见的理化性能检测有拉伸性能、冲击性能、弯曲性能、布/洛/维硬度测试、耐磨试验、疲劳试验。